[AIR-3][AIS-3][BPC-3][RES-3]
AI/ML Development Guide¶
Overview¶
Add a brief overview of this document here.
Table of Contents¶
This guide provides instructions for developing and contributing to AI/ML components in Anya Core.
Development Environment Setup¶
Prerequisites¶
- Rust 1.70+ (nightly recommended for some features)
- Python 3.9+ (for model training and data processing)
- CUDA 11.8+ (for GPU acceleration)
- Docker (for containerized development)
Installation¶
-
Clone the repository:
bash git clone https://github.com/anya-org/anya-core.git cd anya-core
-
Install Rust toolchain:
bash curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh rustup toolchain install nightly rustup default nightly
-
Install Python dependencies:
bash pip install -r requirements-ai.txt
Project Structure¶
anyan-core/
├── src/
│ ├── ai/ # Core AI/ML functionality
│ │ ├── models/ # Model implementations
│ │ ├── training/ # Training pipelines
│ │ └── inference/ # Inference services
│ └── ...
├── docs/
│ └── ai/ # AI/ML documentation
│ ├── ARCHITECTURE.md # System architecture
│ ├── METRICS.md # Performance metrics
│ └── COMPLIANCE.md # Compliance requirements
└── ...
Adding a New Model¶
- Create a new module in
src/ai/models/
- Implement the required traits: ```rust use anya_ai::traits::Model;
pub struct MyModel { // Model state }
#[async_trait::async_trait]
impl Model for MyModel {
async fn infer(&self, input: Value) -> anyhow::Result
- Register the model in
src/ai/mod.rs
- Add unit tests and documentation
Testing¶
Run the test suite:
# Run all tests
cargo test
# Run AI/ML specific tests
cargo test -p anya-ai
# Run with GPU support
CUDA_VISIBLE_DEVICES=0 cargo test --features=cuda
Performance Optimization¶
- Use
#[inline]
for small, frequently called functions - Pre-allocate memory when possible
- Use batch processing for inference
- Profile with
cargo flamegraph
Contributing¶
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Open a pull request
Code Style¶
Follow the Rust API Guidelines and the project's coding standards.
License¶
This project is licensed under the MIT License.