Performance Architecture¶
Table of Contents¶
Last Updated: 2024-03-10
Overview¶
Anya Core's Performance Architecture provides comprehensive monitoring, optimization, and management of system resources. The performance system follows a metrics-driven approach with configurable targets and automated optimization.
System Components¶
1. Performance Optimization [AIR-3] ✅¶
The Performance Optimization component provides resource management and optimization with configurable targets and auto-save capabilities.
Key Features:
- Resource type management (CPU, Memory, Disk, Network, Database, etc.)
- Performance metrics tracking (utilization, throughput, latency)
- Target-based optimization for each resource
- Resource-specific configuration settings
- Auto-save functionality after every Nth change
Implementation:
- Location:
src/core/performance_optimization.rs
- AI Label: [AIR-3]
- Status: ✅ Complete
- Auto-Save: Enabled (every 20th change)
Resource Types:
pub enum ResourceType {
CPU,
Memory,
Disk,
Network,
Database,
Cache,
Custom(u32),
}
Optimization Status:
pub enum OptimizationStatus {
NotOptimized,
Optimizing,
Optimized,
Failed,
}
Architecture:
┌────────────────────┐ ┌─────────────────────┐ ┌────────────────────┐
│ │ │ │ │ │
│ Resource Metrics │───▶│ Performance Optimizer│───▶│ Optimization Actions│
│ │ │ │ │ │
└────────────────────┘ └─────────────────────┘ └────────────────────┘
│ ▲
│ │
▼ │
┌────────────────┐
│ │
│ In-Memory │
│ State │
│ │
└────────────────┘
2. Load Balancing¶
The Load Balancing component distributes workloads across system resources to optimize performance.
Key Features:
- Request distribution
- Service discovery
- Health checking
- Failover handling
- Traffic shaping
3. Caching System¶
The Caching System improves performance by storing frequently accessed data in memory.
Key Features:
- Multi-level caching
- Cache invalidation
- Cache warming
- Hit/miss tracking
- Memory management
4. Database Optimization¶
The Database Optimization component improves database performance through query optimization and indexing.
Key Features:
- Query optimization
- Index management
- Connection pooling
- Transaction management
- Sharding support
Auto-Save Implementation¶
The Performance Optimization component includes auto-save functionality with the following characteristics:
- Configurable auto-save frequency (default: every 20th change)
- In-memory state persistence without file I/O
- Thread-safe implementation with proper locking
- Change counting and tracking
- Timestamp-based save verification
// Example auto-save implementation (simplified)
fn record_input_and_check_save(&self) {
let mut counter = self.input_counter.lock().unwrap();
*counter += 1;
// Auto-save every Nth change
if *counter % self.auto_save_frequency == 0 {
self.save_state_to_memory();
println!("Auto-saved performance state after {} changes", *counter);
}
}
fn save_state_to_memory(&self) {
// In-memory snapshot of performance configurations
let resources = self.resources.lock().unwrap();
let metrics = self.metrics.lock().unwrap();
println!("In-memory performance snapshot created: {} resources, {} metrics",
resources.len(), metrics.len());
}
Performance Optimization Process¶
┌─────────────┐ ┌──────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ │ │ │ │ │ │
│ Collect │───▶│ Analyze │───▶│ Optimize │───▶│ Verify │
│ Metrics │ │ Performance │ │ Resources │ │ Results │
│ │ │ │ │ │ │ │
└─────────────┘ └──────────────┘ └─────────────┘ └─────────────┘
│ ▲
│ │
▼ │
┌────────────────┐
│ │
│ Target │
│ Metrics │
│ │
└────────────────┘
System Interfaces¶
Input Ports¶
- Resource configuration API
- Metrics collection endpoints
- Optimization triggers
- Target setting interface
- Resource management commands
Output Ports¶
- Performance reports
- Optimization results
- Resource status updates
- Alert notifications
- Metrics dashboards
Implementation Details¶
Core Performance Components¶
PerformanceOptimizer
- Resource optimization manager [AIR-3]MetricsCollector
- System metrics collectionResourceManager
- Resource allocation and managementOptimizationEngine
- Optimization algorithms and execution
Technology Stack¶
- Rust for system components
- Prometheus for metrics collection
- Grafana for metrics visualization
- Custom optimization algorithms
- Thread-safe concurrent data structures
Testing Strategy¶
The performance system includes comprehensive testing:
- Unit Tests: For individual optimization functions
- Integration Tests: For component interaction
- Load Tests: For system performance under load
- Benchmark Tests: For optimization effectiveness
Performance Considerations¶
- Resource utilization targets
- Throughput optimization
- Latency reduction
- Memory efficiency
- I/O optimization
Performance Benchmarks¶
Performance metrics for the optimization system:
Resource Type | Before Optimization | After Optimization | Improvement |
---|---|---|---|
CPU | 85% utilization | 65% utilization | 23.5% |
Memory | 75% utilization | 60% utilization | 20.0% |
Database | 120ms latency | 80ms latency | 33.3% |
Network | 70% bandwidth | 50% bandwidth | 28.6% |
Bitcoin-Specific Performance Features¶
The Performance Architecture includes specialized optimizations for Bitcoin operations:
1. Transaction Processing Optimization¶
- UTXO Set Management: Optimized UTXO caching and retrieval
- Script Verification: Acceleration of script execution for common patterns
- Signature Verification: Optimized signature verification pipeline
- Block Processing: Efficient parallel block validation
2. Network Optimization¶
- Peer Connection Management: Optimized peer selection and connection handling
- Message Propagation: Efficient message routing and propagation strategies
- Bandwidth Management: Dynamic bandwidth allocation based on priorities
- P2P Network Optimization: Fine-tuned communication protocols
3. Layer 2 Performance¶
The performance architecture now includes specialized optimizations for Layer 2 solutions:
BOB Hybrid L2 Performance¶
- Bitcoin Relay Optimization: Efficient relay synchronization and validation processes
- Cross-Layer Transaction Performance: Optimizing transaction flow between Bitcoin L1 and BOB L2
- EVM Execution Optimization: Performance tuning for EVM-compatible smart contract execution
- BitVM Verification Acceleration: Optimized BitVM verification processes
- Cross-Layer State Synchronization: Efficient state synchronization between L1 and L2
- Layer 2 Resource Management: Optimized resource allocation for L2 operations
Implementation:
pub struct L2PerformanceOptimizer {
// Relay performance components
relay_optimizer: RelayOptimizer,
// Smart contract performance
evm_optimizer: EvmOptimizer,
// Cross-layer performance
cross_layer_optimizer: CrossLayerOptimizer,
// BitVM performance
bitvm_optimizer: BitVMOptimizer,
// Metrics collection
l2_metrics: L2PerformanceMetrics,
}
Performance Metrics for BOB Integration:
Component | Latency (ms) | Throughput (tx/s) | Resource Usage |
---|---|---|---|
Bitcoin Relay | 100-500 | 10-50 | Medium |
EVM Execution | 10-50 | 100-500 | Medium-High |
Cross-Layer Tx | 500-2000 | 5-20 | Medium |
BitVM Operations | 100-1000 | 1-10 | High |
State Sync | 1000-5000 | N/A | Medium-High |
Cross-Layer Performance Architecture:
┌─────────────────┐ ┌─────────────────┐
│ │ │ │
│ Bitcoin L1 │◄────────►│ Performance │
│ Optimization │ │ Core │
│ │ │ │
└─────────────────┘ └────────┬────────┘
│
▼
┌─────────────────┐
│ │
│ L2 Performance │
│ Optimizer │
│ │
└─────────────────┘
│
▼
┌─────────────────┐
│ │
│ Smart Contract │
│ Optimization │
│ │
└─────────────────┘
Future Enhancements¶
- Enhanced adaptive optimization algorithms
- AI-driven resource allocation
- Predictive scaling capabilities
- Advanced anomaly detection
- Cross-component optimization strategies
[AIR-3][AIS-3][BPC-3][RES-3]
This document follows the AI Labeling System standards based on official Bitcoin Improvement Proposals (BIPs).