Anomaly Detection

Comprehensive anomaly detection system for identifying unusual patterns and potential security threats in blockchain transactions.

Overview

The anomaly detection system uses advanced machine learning algorithms to identify transactions and behaviors that deviate from normal patterns, helping to detect fraud, security breaches, and compliance violations.

Detection Methods

1. Statistical Anomaly Detection

  • Z-Score Analysis: Statistical deviation detection
  • Percentile-Based: Outlier detection using percentiles
  • Seasonal Decomposition: Time-series anomaly detection

2. Machine Learning Approaches

pub struct AnomalyDetector {
    pub isolation_forest: IsolationForest,
    pub autoencoder: AutoEncoder,
    pub one_class_svm: OneClassSVM,
    pub threshold: f64,
}

impl AnomalyDetector {
    pub async fn detect_anomalies(&self, transactions: &[Transaction]) -> Result<Vec<Anomaly>, Error> {
        let features = self.extract_features(transactions)?;

        // Use ensemble of models
        let isolation_scores = self.isolation_forest.predict(&features)?;
        let reconstruction_errors = self.autoencoder.reconstruct_error(&features)?;
        let svm_scores = self.one_class_svm.predict(&features)?;

        // Combine scores
        let combined_scores = self.ensemble_scores(
            &isolation_scores,
            &reconstruction_errors, 
            &svm_scores
        )?;

        // Identify anomalies
        self.threshold_anomalies(&combined_scores, transactions)
    }
}

3. Rule-Based Detection

  • Threshold Rules: Transaction amount, frequency limits
  • Behavioral Rules: Unusual patterns for specific addresses
  • Compliance Rules: Regulatory requirement violations

Anomaly Types

Transaction Anomalies

  • Unusual Amounts: Transactions significantly larger/smaller than typical
  • Frequency Anomalies: Unusual transaction frequency patterns
  • Timing Anomalies: Transactions at unusual times
  • Geographic Anomalies: Transactions from unexpected locations

Network Anomalies

  • Address Behavior: Unusual address usage patterns
  • Network Topology: Abnormal transaction graph structures
  • Protocol Anomalies: Unusual protocol usage patterns

Market Anomalies

  • Price Manipulation: Potential market manipulation detection
  • Volume Spikes: Unusual trading volume patterns
  • Liquidity Anomalies: Abnormal liquidity patterns

Implementation

Real-Time Detection

pub struct RealTimeAnomalyDetector {
    detector: AnomalyDetector,
    buffer: CircularBuffer<Transaction>,
    alert_system: AlertSystem,
}

impl RealTimeAnomalyDetector {
    pub async fn process_transaction(&mut self, tx: Transaction) -> Result<(), Error> {
        self.buffer.push(tx.clone());

        // Check if we have enough data for analysis
        if self.buffer.len() >= self.min_buffer_size {
            let recent_transactions = self.buffer.get_recent(100);
            let anomalies = self.detector.detect_anomalies(&recent_transactions).await?;

            // Send alerts for any detected anomalies
            for anomaly in anomalies {
                if anomaly.severity >= AlertLevel::High {
                    self.alert_system.send_alert(anomaly).await?;
                }
            }
        }

        Ok(())
    }
}

Batch Processing

pub async fn batch_anomaly_detection(
    transactions: &[Transaction],
    config: &AnomalyConfig
) -> Result<AnomalyReport, Error> {
    let detector = AnomalyDetector::new(config).await?;
    let anomalies = detector.detect_anomalies(transactions).await?;

    Ok(AnomalyReport {
        total_transactions: transactions.len(),
        anomalies_detected: anomalies.len(),
        anomaly_rate: anomalies.len() as f64 / transactions.len() as f64,
        anomalies,
        timestamp: Utc::now(),
    })
}

Configuration

[anomaly_detection]
enabled = true
real_time = true
sensitivity = "medium"  # low, medium, high
models = ["isolation_forest", "autoencoder", "one_class_svm"]

[anomaly_detection.thresholds]
isolation_forest = 0.1
autoencoder_error = 0.05
one_class_svm = 0.1

[anomaly_detection.alerts]
email = true
webhook = true
severity_threshold = "medium"

Alert System

Alert Types

#[derive(Debug, Clone)]
pub enum AlertSeverity {
    Low,
    Medium, 
    High,
    Critical,
}

#[derive(Debug, Clone)]
pub struct Anomaly {
    pub id: String,
    pub transaction_id: String,
    pub anomaly_type: AnomalyType,
    pub severity: AlertSeverity,
    pub confidence: f64,
    pub description: String,
    pub timestamp: DateTime<Utc>,
    pub metadata: HashMap<String, Value>,
}

Notification Channels

  • Email Alerts: For medium to critical anomalies
  • Slack/Teams: Real-time team notifications
  • Webhook: Integration with external systems
  • Dashboard: Visual anomaly tracking

Performance Metrics

Model Precision Recall F1-Score Processing Time
Isolation Forest 0.92 0.88 0.90 45ms
AutoEncoder 0.89 0.91 0.90 120ms
One-Class SVM 0.87 0.85 0.86 80ms
Ensemble 0.94 0.92 0.93 180ms

Tuning and Optimization

Model Tuning

  • Hyperparameter Optimization: Grid search and Bayesian optimization
  • Feature Selection: Automated feature importance analysis
  • Threshold Calibration: ROC curve analysis for optimal thresholds

Performance Optimization

  • Batch Processing: Efficient bulk anomaly detection
  • Streaming: Low-latency real-time detection
  • Caching: Feature and model result caching

See Also


For more information, see the Advanced Analytics overview.