Advanced Analytics

- [WebSocket Streaming](#websocket-streaming)
- [Health Checks](#health-checks)

Overview

Anya Enterprise's Advanced Analytics module provides comprehensive data analysis and visualization capabilities for blockchain transactions, market trends, and system performance. This enterprise-grade solution offers real-time insights and predictive analytics.

Features

Transaction Analytics

  • Real-time transaction monitoring (Guide)

Market Intelligence

  • Volatility indicators (Details)
  • Correlation analysis (Guide)

Performance Metrics

  • System health monitoring (Guide)
  • Resource utilization (Details)
  • Network performance (Guide)

Implementation

Data Collection

pub struct AnalyticsCollector {
    pub config: CollectorConfig,
<!-- Broken link removed: [System Metrics Guide](../monitoring/system-metrics.md) -->
    pub metrics: MetricsRegistry,
    pub storage: TimeSeriesDB,
<!-- Broken link removed: [Health Checks Guide](../monitoring/health-checks.md) -->
}

impl AnalyticsCollector {
<!-- Broken link removed: [Development Configuration Guide](./development-config.md) -->
    pub async fn collect_metrics(&self) -> Result<(), CollectorError> {
        // Implementation details
<!-- Broken link removed: [Production Configuration Guide](./production-config.md) -->
    }
}

For collection details, see Data Collection Guide.

Data Processing

pub async fn process_transaction_data(
    transactions: Vec<Transaction>,
    config: ProcessingConfig,
) -> Result<AnalyticsResult, ProcessingError> {
    // Implementation details
}

For processing details, see Data Processing Guide.

Real-Time Analytics

Stream Processing

pub struct AnalyticsStream {
    pub input: mpsc::Receiver<AnalyticsEvent>,
    pub processor: StreamProcessor,
    pub output: mpsc::Sender<AnalyticsResult>,
}

impl AnalyticsStream {
    pub async fn process_events(&mut self) -> Result<(), StreamError> {
        while let Some(event) = self.input.recv().await {
            let result = self.processor.process_event(event).await?;
            self.output.send(result).await?;
        }
        Ok(())
    }
}

For stream processing details, see Stream Processing Guide.

Event Processing

#[derive(Debug)]
pub enum AnalyticsEvent {
    Transaction(TransactionData),
    Block(BlockData),
    Market(MarketData),
    System(SystemMetrics),
}

For event processing details, see Event Processing Guide.

Data Visualization

Chart Generation

pub struct ChartGenerator {
    pub config: ChartConfig,
    pub renderer: ChartRenderer,
}

impl ChartGenerator {
    pub fn generate_chart(
        &self,
        data: &AnalyticsData,
        options: ChartOptions,
    ) -> Result<Chart, ChartError> {
        // Implementation details
    }
}

For chart generation details, see Chart Generation Guide.

Dashboard Configuration

[dashboard]
refresh_rate = 5000  # milliseconds
default_timespan = "24h"
max_data_points = 1000

[dashboard.charts]
transaction_volume = true
price_trends = true
system_metrics = true

For dashboard configuration details, see Dashboard Configuration Guide.

Machine Learning

Model Training

pub struct MLModel {
    pub config: ModelConfig,
    pub trainer: ModelTrainer,
    pub validator: ModelValidator,
}

impl MLModel {
    pub async fn train(
        &mut self,
        training_data: TrainingData,
    ) -> Result<(), TrainingError> {
        // Implementation details
    }
}

For model training details, see Model Training Guide.

Prediction

pub async fn predict_metrics(
    model: &MLModel,
    input_data: InputData,
) -> Result<Prediction, PredictionError> {
    // Implementation details
}

For prediction details, see Prediction Guide.

Performance Optimization

Caching Strategy

pub struct AnalyticsCache {
    pub config: CacheConfig,
    pub storage: CacheStorage,
}

impl AnalyticsCache {
    pub async fn get_or_compute<T>(
        &self,
        key: CacheKey,
        computer: impl FnOnce() -> Future<Output = T>,
    ) -> Result<T, CacheError> {
        // Implementation details
    }
}

Data Aggregation

pub struct Aggregator {
    pub config: AggregationConfig,
    pub storage: TimeSeriesDB,
}

impl Aggregator {
    pub async fn aggregate_data(
        &self,
        timespan: Duration,
    ) -> Result<AggregatedData, AggregationError> {
        // Implementation details
    }
}

For data aggregation details, see Data Aggregation Guide.

API Integration

REST API

#[get("/analytics/transactions")]
pub async fn get_transaction_analytics(
    Query(params): Query<AnalyticsParams>,
    State(state): State<AppState>,
) -> Result<Json<AnalyticsResponse>, Error> {
    // Implementation details
}

For REST API details, see REST API Guide.

WebSocket Streaming

pub struct AnalyticsWebSocket {
    pub config: WebSocketConfig,
    pub stream: WebSocketStream,
}

impl AnalyticsWebSocket {
    pub async fn stream_analytics(
        &mut self,
        filters: StreamFilters,
    ) -> Result<(), WebSocketError> {
        // Implementation details
    }
}

For WebSocket streaming details, see WebSocket Streaming Guide.

Security

Access Control

#[derive(Debug)]
pub struct AnalyticsPermissions {
    pub read: Vec<Permission>,
    pub write: Vec<Permission>,
    pub admin: Vec<Permission>,
}

For access control details, see Access Control Guide.

Data Protection

pub struct DataProtection {
    pub encryption: EncryptionConfig,
    pub masking: DataMaskingRules,
}

Monitoring

System Metrics

#[derive(Debug)]
pub struct SystemMetrics {
    pub cpu_usage: f64,
    pub memory_usage: f64,
    pub disk_io: DiskMetrics,
    pub network_io: NetworkMetrics,
}

Health Checks

pub async fn check_analytics_health() -> Result<HealthStatus, HealthCheckError> {
    // Implementation details
}

Configuration Examples

Development

[analytics]
environment = "development"
log_level = "debug"
metrics_enabled = true

[analytics.collection]
interval = 60
batch_size = 1000

Production

[analytics]
environment = "production"
log_level = "info"
metrics_enabled = true

[analytics.collection]
interval = 15
batch_size = 5000

Best Practices

  1. Data Collection
  2. Use appropriate sampling rates
  3. Implement data validation
  4. Handle missing data
  5. Optimize storage

  6. Processing

  7. Batch processing when possible
  8. Implement caching
  9. Use efficient algorithms
  10. Handle errors gracefully

  11. Visualization

  12. Use appropriate chart types
  13. Implement responsive design
  14. Optimize rendering
  15. Handle large datasets

Support

For additional support:

Last updated: 2025-06-02