[AIR-3][AIS-3][BPC-3][RES-3]
Model Management¶
Overview¶
Add a brief overview of this document here.
Table of Contents¶
This document outlines the model management system in Anya Core's ML infrastructure.
Model Registry¶
Registering a New Model¶
from anya_ml import ModelRegistry
registry = ModelRegistry()
model_id = registry.register_model(
name="sentiment-analysis",
version="1.0.0",
framework="pytorch",
path="/path/to/model.pth",
metrics={"accuracy": 0.95, "f1": 0.92}
)
Model Versioning¶
Models follow semantic versioning (MAJOR.MINOR.PATCH): - MAJOR: Breaking changes - MINOR: New features, backward compatible - PATCH: Bug fixes and patches
Model Serving¶
Starting a Model Server¶
anya-ml serve --model-id sentiment-analysis:1.0.0 --port 8080
Making Predictions¶
import requests
response = requests.post(
"http://localhost:8080/predict",
json={"text": "Anya Core is amazing!"}
)
print(response.json())
Model Monitoring¶
Metrics Collection¶
Key metrics are automatically collected: - Prediction latency - Throughput - Error rates - Resource usage
Alerting¶
Configure alerts for: - High prediction latency - Increased error rates - Model drift - Resource constraints
Model Updates¶
Rolling Updates¶
# Start canary deployment
anya-ml update --model-id sentiment-analysis:2.0.0 --strategy canary --percentage 10
# Monitor canary performance
anya-ml monitor --model-id sentiment-analysis:2.0.0
# Complete rollout
anya-ml update --model-id sentiment-analysis:2.0.0 --strategy rolling --batch-size 20%
Rollback Procedure¶
# Check rollback targets
anya-ml history --model-id sentiment-analysis
# Rollback to previous version
anya-ml rollback --model-id sentiment-analysis --to-version 1.0.0
Model Security¶
Access Control¶
# .anya/model_permissions.yaml
models:
sentiment-analysis:
read:
- team:ml
write:
- user:admin
admin:
- user:ml-admin
Model Signing¶
All models are cryptographically signed:
# Sign a model
anya-ml sign --model-id sentiment-analysis:1.0.0 --key ~/.keys/private.pem
# Verify model signature
anya-ml verify --model-id sentiment-analysis:1.0.0 --key ~/.keys/public.pem
Best Practices¶
Model Packaging¶
- Include all dependencies in
requirements.txt
- Provide example input/output in
examples/
- Document model architecture in
README.md
- Include evaluation metrics and test results
Performance Optimization¶
- Use ONNX for cross-framework optimization
- Enable model quantization for inference
- Utilize hardware acceleration (CUDA, MPS, etc.)
- Implement request batching
Troubleshooting¶
Common Issues¶
- Model Loading Failures ```bash # Check model format file /path/to/model
# Verify dependencies pip freeze | grep -E 'torch|tensorflow|onnx' ```
-
Performance Issues
bash # Profile model anya-ml profile --model-id sentiment-analysis:1.0.0 --input /path/to/test_data.json
-
Permission Errors ```bash # Check model permissions ls -l /path/to/model
# Verify API keys anya-ml config list ```