AI Integration Guide

Table of Contents

Documentation Version: 2.0
Last Updated: 2025-05-30
Status: Active
AI Label: [AIR-3][AIS-3][BPC-3]

📖 Table of Contents

For a complete understanding of the AI system, please refer to:

Overview

Anya Core provides a flexible framework for integrating AI models and services. This guide covers the end-to-end process of integrating AI capabilities into the platform, from model development to production deployment.

Key Features

  • Unified Model Serving: Consistent interface for deploying and managing ML models
  • Scalable Architecture: Built-in support for horizontal scaling
  • Comprehensive Monitoring: Real-time metrics and logging
  • Security First: Built-in security best practices
  • Extensible: Support for custom model types and frameworks

Architecture

Core Components

graph TD
    subgraph Anya Core
        AI[AI Module] -->|Manages| ModelRegistry[Model Registry]
        AI -->|Processes| InferenceEngine[Inference Engine]
        AI -->|Trains| TrainingService[Training Service]
        AI -->|Monitors| Monitoring[Monitoring]

        ModelRegistry -->|Stores| ModelMetadata[Model Metadata]
        ModelRegistry -->|Tracks| ModelVersions[Model Versions]

        InferenceEngine -->|Supports| RealTime[Real-time Inference]
        InferenceEngine -->|Supports| Batch[Batch Processing]

        TrainingService -->|Uses| TrainingData[Training Data]
        TrainingService -->|Produces| TrainedModels[Trained Models]

        Monitoring -->|Tracks| Metrics[Performance Metrics]
        Monitoring -->|Alerts| Anomalies[Anomaly Detection]
    end

    subgraph External Services
        Models[AI Models]
        Data[Data Sources]
        Storage[Model Storage]
        Clients[Client Applications]
    end

    AI -->|Publishes| API[API Endpoints]
    API -->|Serves| Clients

    ModelRegistry -->|Stores in| Storage
    InferenceEngine -->|Loads from| Models
    TrainingService -->|Reads from| Data
    TrainingService -->|Saves to| Storage

Data Flow

  1. Model Registration
  2. Models are registered in the Model Registry with metadata and versioning
  3. Model artifacts are stored in the configured storage backend

  4. Inference Request

  5. Client sends request to API endpoint
  6. Request is routed to appropriate model version
  7. Inference Engine loads model (if not cached)
  8. Prediction is generated and returned

  9. Model Updates

  10. New model versions are registered
  11. Traffic is gradually shifted (canary deployment)
  12. Rollback to previous version if issues detected

Getting Started

Prerequisites

Before you begin, ensure you have the following installed:

  • Anya Core (v1.2.0 or later)
  • Python 3.8+ or Rust 1.60+
  • Docker (for containerized deployment)
  • Kubernetes (for production deployment)
  • GPU (recommended for production workloads)

Installation

Option 1: Using pip (Python)

# Install Anya Core with AI dependencies
pip install anya-core[ai]

# Or install from source
pip install -e .[ai]

Option 2: Using Cargo (Rust)

# Cargo.toml
[dependencies]
anya-core = { version = "1.2.0", features = ["ai"] }

Quick Start

  1. Start the AI Service

bash # Start with default settings anya ai serve --model gpt-4 --port 8000

  1. Make a Prediction

```python import requests

response = requests.post( "http://localhost:8000/predict", json={ "inputs": ["Hello, world!"], "parameters": { "max_length": 100, "temperature": 0.7 } } ) print(response.json()) ```

  1. Check Service Health

bash curl http://localhost:8000/health

Configuration

Configure the AI service using environment variables or a YAML configuration file:

# config/ai.yaml
model:
  name: gpt-4
  version: latest
  device: cuda  # or cpu

server:
  port: 8000
  workers: 4
  log_level: info

monitoring:
  enabled: true
  metrics_port: 9090

cache:
  enabled: true
  ttl: 3600
  max_size: 1000

security:
  auth_required: true
  allowed_origins:
    - "https://app.anya.org"
    - "http://localhost:3000"

Model Serving

Anya Core provides a robust model serving infrastructure that supports various deployment patterns and scaling strategies. This section covers the key aspects of serving models in production.

Core Features

  • Multiple Serving Endpoints: REST, gRPC, and WebSocket APIs
  • Model Versioning: Seamless version management
  • Dynamic Batching: Optimize throughput with automatic request batching
  • Model Warmup: Pre-load models to reduce cold start latency
  • Request Timeouts: Configurable timeouts for inference requests
  • Concurrency Control: Limit concurrent requests per model

Deployment Options

1. Standalone Server

# Start a standalone server
anya ai serve --model gpt-4 --port 8000 --workers 4

2. Docker Compose

# docker-compose.yml
version: '3.8'
services:
  ai-service:
    image: anya/ai:latest
    ports:
      - "8000:8000"
      - "9090:9090"
    environment:
      - MODEL=gpt-4
      - DEVICE=cuda
      - WORKERS=4
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: 1
              capabilities: [gpu]
    volumes:
      - ./models:/app/models
      - ./config:/app/config

3. Kubernetes with Helm

# Install with Helm
helm install ai-service anya/ai \
  --set model.name=gpt-4 \
  --set replicaCount=3 \
  --set resources.limits.nvidia.com/gpu=1

Scaling

Horizontal Pod Autoscaling

# hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ai-service
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: ai-service
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: External
    external:
      metric:
        name: requests_per_second
        selector:
          matchLabels:
            app: ai-service
      target:
        type: AverageValue
        averageValue: 1000

GPU Sharing

# Enable GPU sharing with time-slicing
apiVersion: v1
kind: ConfigMap
metadata:
  name: time-slicing-config
data:
  anya-ai: |
    version: v1
    sharing:
      timeSlicing:
        resources:
        - name: nvidia.com/gpu
          replicas: 4  # Share 1 GPU among 4 models

Monitoring

Built-in Metrics

Anya Core exposes the following metrics:

  • anya_ai_requests_total - Total number of requests
  • anya_ai_request_duration_seconds - Request duration histogram
  • anya_ai_model_load_count - Model load events
  • anya_ai_batch_size - Current batch size
  • anya_ai_queue_size - Current queue size

Grafana Dashboard

Import the following dashboard for monitoring:

{
  "annotations": {
    "list": [
      {
        "builtIn": 1,
        "datasource": "-- Grafana --",
        "enable": true,
        "hide": true,
        "iconColor": "rgba(0, 211, 255, 1)",
        "name": "Annotations & Alerts",
        "type": "dashboard"
      }
    ]
  },
  "editable": true,
  "gnetId": 13639,
  "graphTooltip": 0,
  "id": 2,
  "links": [],
  "panels": [
    /* Dashboard panels configuration */
  ],
  "schemaVersion": 27,
  "style": "dark",
  "tags": ["ai", "monitoring"],
  "templating": {
    "list": []
  },
  "time": {
    "from": "now-6h",
    "to": "now"
  },
  "timepicker": {},
  "timezone": "",
  "title": "Anya AI Monitoring",
  "uid": "anya-ai-dashboard",
  "version": 1
}

Canary Deployments

Gradually roll out new model versions:

# canary-deployment.yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
  name: gpt-4
  namespace: ai
spec:
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: gpt-4
  service:
    port: 8000
  analysis:
    interval: 1m
    threshold: 5
    stepWeight: 10
    metrics:
    - name: request-success-rate
      thresholdRange:
        min: 99
      interval: 1m
    - name: request-duration
      thresholdRange:
        max: 500
      interval: 1m

A/B Testing

Run experiments with different model versions:

from anya_ai.experiment import ABTest

# Define experiment
experiment = ABTest(
    name="model-comparison",
    variants=[
        {"name": "gpt-4", "weight": 70, "config": {"version": "1.0.0"}},
        {"name": "llama-2", "weight": 30, "config": {"model": "llama-2-70b"}}
    ],
    metrics=["accuracy", "latency"]
)

# Get variant for user
variant = experiment.get_variant(user_id="user123")
# Use variant config for inference
result = model.predict(..., **variant.config)
# Log metrics
experiment.log_metric("latency", variant.name, 0.15)

Best Practices

  1. Resource Management
  2. Set appropriate CPU/Memory limits
  3. Use GPU for compute-intensive models
  4. Implement request timeouts

  5. Reliability

  6. Use retries with exponential backoff
  7. Implement circuit breakers
  8. Set up health checks

  9. Performance

  10. Enable request batching
  11. Use model warmup
  12. Implement caching for frequent requests

  13. Security

  14. Enable authentication
  15. Validate input data
  16. Monitor for abuse

For more advanced deployment strategies, see the Model Serving Best Practices section below.

API Reference

REST API

Authentication

All API endpoints require authentication. Include your API key in the Authorization header:

Authorization: Bearer YOUR_API_KEY

Base URL

https://api.anya.ai/v1

Endpoints

1. Model Inference

POST /models/{model_id}/predict

Make predictions using a specific model.

Request

{
  "inputs": ["Hello, world!"],
  "parameters": {
    "max_length": 100,
    "temperature": 0.7
  }
}

Response

{
  "outputs": ["Generated text response"],
  "model": "gpt-4",
  "model_version": "1.0.0",
  "metadata": {
    "tokens_generated": 20,
    "tokens_processed": 5,
    "latency_ms": 150
  }
}

2. Model Information

GET /models/{model_id}

Get information about a specific model.

Response

{
  "id": "gpt-4",
  "version": "1.0.0",
  "framework": "pytorch",
  "input_schema": {
    "type": "string",
    "max_length": 2048
  },
  "output_schema": {
    "type": "string"
  },
  "parameters": {
    "max_length": {
      "type": "integer",
      "default": 100,
      "min": 1,
      "max": 4096
    },
    "temperature": {
      "type": "float",
      "default": 0.7,
      "min": 0.0,
      "max": 2.0
    }
  },
  "created_at": "2025-01-01T00:00:00Z",
  "updated_at": "2025-01-01T00:00:00Z"
}

Error Handling

All API errors follow the same format:

{
  "error": {
    "code": "invalid_request",
    "message": "The request was invalid",
    "details": {
      "field": "temperature",
      "issue": "Value must be between 0 and 2"
    }
  }
}

Common Error Codes

Status Code Error Code Description
400 invalid_request The request was invalid
401 unauthorized Authentication failed
403 forbidden Insufficient permissions
404 not_found The requested resource was not found
429 rate_limit_exceeded Rate limit exceeded
500 internal_error An internal server error occurred
503 service_unavailable Service is currently unavailable

Rate Limiting

  • Free Tier: 100 requests per minute
  • Pro Tier: 1,000 requests per minute
  • Enterprise: Custom limits available

Rate limit headers are included in all responses:

X-RateLimit-Limit: 100
X-RateLimit-Remaining: 97
X-RateLimit-Reset: 1625097600

For a complete reference of all available endpoints, see the API Reference.

Best Practices

1. Model Versioning

  • Use semantic versioning for models
  • Keep backward compatibility when possible
  • Document breaking changes

2. Error Handling

  • Use custom error types
  • Provide meaningful error messages
  • Log errors with context

3. Performance

  • Use batching for inference
  • Implement model quantization
  • Profile and optimize critical paths

4. Security

  • Validate all inputs
  • Sanitize outputs
  • Implement rate limiting

Troubleshooting

Common Issues

  1. Model Loading Fails
  2. Check model file paths
  3. Verify model format
  4. Check file permissions

  5. Inference Performance Issues

  6. Check batch size
  7. Profile GPU/CPU usage
  8. Check for memory leaks

  9. Training Diverges

  10. Check learning rate
  11. Verify data preprocessing
  12. Monitor loss curves

Debugging

Enable debug logging:

use tracing_subscriber;

fn init_logging() {
    tracing_subscriber::fmt()
        .with_max_level(tracing::Level::DEBUG)
        .init();
}

Examples

Text Generation

use anya_ai::{Model, TextGenerator};

let model = TextGenerator::load("gpt-4").await?;
let prompt = "Once upon a time";
let result = model.generate(prompt, 100).await?;
println!("Generated: {}", result);

Image Classification

use anya_ai::{Model, ImageClassifier};

let model = ImageClassifier::load("resnet50").await?;
let image = load_image("cat.jpg")?;
let class = model.classify(&image).await?;
println!("Predicted class: {}", class);

Security Considerations

1. Input Validation

  • Validate all inputs
  • Sanitize user-provided data
  • Implement input length limits

2. Model Security

  • Sign model files
  • Verify model hashes
  • Use secure model storage

3. API Security

  • Authenticate API requests
  • Implement rate limiting
  • Use HTTPS

4. Data Privacy

  • Anonymize training data
  • Implement data access controls
  • Log data access

Conclusion

This guide covers the essentials of AI integration in Anya Core. For more advanced usage, refer to the API documentation and examples.

See Also