AI Integration Guide¶
Table of Contents¶
Documentation Version: 2.0
Last Updated: 2025-05-30
Status: Active
AI Label: [AIR-3][AIS-3][BPC-3]
📖 Table of Contents¶
- Overview
- Related Documentation
- Architecture
- Core Components
- Data Flow
- Getting Started
- Prerequisites
- Installation
- Quick Start
- Model Serving
- Deployment Options
- Scaling
- Monitoring
- Canary Deployments
Related Documentation¶
For a complete understanding of the AI system, please refer to:
- AI System Overview - High-level architecture and components
- AI Architecture - Technical implementation details
- AI Development Guide - Building and contributing to AI components
- AI Compliance - Regulatory and security requirements
- AI Metrics - Performance monitoring and metrics
- A/B Testing
- API Reference
- Best Practices
- Troubleshooting
- Examples
- Security Considerations
- Related Documents
Overview¶
Anya Core provides a flexible framework for integrating AI models and services. This guide covers the end-to-end process of integrating AI capabilities into the platform, from model development to production deployment.
Key Features¶
- Unified Model Serving: Consistent interface for deploying and managing ML models
- Scalable Architecture: Built-in support for horizontal scaling
- Comprehensive Monitoring: Real-time metrics and logging
- Security First: Built-in security best practices
- Extensible: Support for custom model types and frameworks
Architecture¶
Core Components¶
graph TD
subgraph Anya Core
AI[AI Module] -->|Manages| ModelRegistry[Model Registry]
AI -->|Processes| InferenceEngine[Inference Engine]
AI -->|Trains| TrainingService[Training Service]
AI -->|Monitors| Monitoring[Monitoring]
ModelRegistry -->|Stores| ModelMetadata[Model Metadata]
ModelRegistry -->|Tracks| ModelVersions[Model Versions]
InferenceEngine -->|Supports| RealTime[Real-time Inference]
InferenceEngine -->|Supports| Batch[Batch Processing]
TrainingService -->|Uses| TrainingData[Training Data]
TrainingService -->|Produces| TrainedModels[Trained Models]
Monitoring -->|Tracks| Metrics[Performance Metrics]
Monitoring -->|Alerts| Anomalies[Anomaly Detection]
end
subgraph External Services
Models[AI Models]
Data[Data Sources]
Storage[Model Storage]
Clients[Client Applications]
end
AI -->|Publishes| API[API Endpoints]
API -->|Serves| Clients
ModelRegistry -->|Stores in| Storage
InferenceEngine -->|Loads from| Models
TrainingService -->|Reads from| Data
TrainingService -->|Saves to| Storage
Data Flow¶
- Model Registration
- Models are registered in the Model Registry with metadata and versioning
-
Model artifacts are stored in the configured storage backend
-
Inference Request
- Client sends request to API endpoint
- Request is routed to appropriate model version
- Inference Engine loads model (if not cached)
-
Prediction is generated and returned
-
Model Updates
- New model versions are registered
- Traffic is gradually shifted (canary deployment)
- Rollback to previous version if issues detected
Getting Started¶
Prerequisites¶
Before you begin, ensure you have the following installed:
- Anya Core (v1.2.0 or later)
- Python 3.8+ or Rust 1.60+
- Docker (for containerized deployment)
- Kubernetes (for production deployment)
- GPU (recommended for production workloads)
Installation¶
Option 1: Using pip (Python)¶
# Install Anya Core with AI dependencies
pip install anya-core[ai]
# Or install from source
pip install -e .[ai]
Option 2: Using Cargo (Rust)¶
# Cargo.toml
[dependencies]
anya-core = { version = "1.2.0", features = ["ai"] }
Quick Start¶
- Start the AI Service
bash
# Start with default settings
anya ai serve --model gpt-4 --port 8000
- Make a Prediction
```python import requests
response = requests.post( "http://localhost:8000/predict", json={ "inputs": ["Hello, world!"], "parameters": { "max_length": 100, "temperature": 0.7 } } ) print(response.json()) ```
- Check Service Health
bash
curl http://localhost:8000/health
Configuration¶
Configure the AI service using environment variables or a YAML configuration file:
# config/ai.yaml
model:
name: gpt-4
version: latest
device: cuda # or cpu
server:
port: 8000
workers: 4
log_level: info
monitoring:
enabled: true
metrics_port: 9090
cache:
enabled: true
ttl: 3600
max_size: 1000
security:
auth_required: true
allowed_origins:
- "https://app.anya.org"
- "http://localhost:3000"
Model Serving¶
Anya Core provides a robust model serving infrastructure that supports various deployment patterns and scaling strategies. This section covers the key aspects of serving models in production.
Core Features¶
- Multiple Serving Endpoints: REST, gRPC, and WebSocket APIs
- Model Versioning: Seamless version management
- Dynamic Batching: Optimize throughput with automatic request batching
- Model Warmup: Pre-load models to reduce cold start latency
- Request Timeouts: Configurable timeouts for inference requests
- Concurrency Control: Limit concurrent requests per model
Deployment Options¶
1. Standalone Server¶
# Start a standalone server
anya ai serve --model gpt-4 --port 8000 --workers 4
2. Docker Compose¶
# docker-compose.yml
version: '3.8'
services:
ai-service:
image: anya/ai:latest
ports:
- "8000:8000"
- "9090:9090"
environment:
- MODEL=gpt-4
- DEVICE=cuda
- WORKERS=4
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
volumes:
- ./models:/app/models
- ./config:/app/config
3. Kubernetes with Helm¶
# Install with Helm
helm install ai-service anya/ai \
--set model.name=gpt-4 \
--set replicaCount=3 \
--set resources.limits.nvidia.com/gpu=1
Scaling¶
Horizontal Pod Autoscaling¶
# hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ai-service
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ai-service
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: External
external:
metric:
name: requests_per_second
selector:
matchLabels:
app: ai-service
target:
type: AverageValue
averageValue: 1000
GPU Sharing¶
# Enable GPU sharing with time-slicing
apiVersion: v1
kind: ConfigMap
metadata:
name: time-slicing-config
data:
anya-ai: |
version: v1
sharing:
timeSlicing:
resources:
- name: nvidia.com/gpu
replicas: 4 # Share 1 GPU among 4 models
Monitoring¶
Built-in Metrics¶
Anya Core exposes the following metrics:
anya_ai_requests_total
- Total number of requestsanya_ai_request_duration_seconds
- Request duration histogramanya_ai_model_load_count
- Model load eventsanya_ai_batch_size
- Current batch sizeanya_ai_queue_size
- Current queue size
Grafana Dashboard¶
Import the following dashboard for monitoring:
{
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": "-- Grafana --",
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"type": "dashboard"
}
]
},
"editable": true,
"gnetId": 13639,
"graphTooltip": 0,
"id": 2,
"links": [],
"panels": [
/* Dashboard panels configuration */
],
"schemaVersion": 27,
"style": "dark",
"tags": ["ai", "monitoring"],
"templating": {
"list": []
},
"time": {
"from": "now-6h",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "Anya AI Monitoring",
"uid": "anya-ai-dashboard",
"version": 1
}
Canary Deployments¶
Gradually roll out new model versions:
# canary-deployment.yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: gpt-4
namespace: ai
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: gpt-4
service:
port: 8000
analysis:
interval: 1m
threshold: 5
stepWeight: 10
metrics:
- name: request-success-rate
thresholdRange:
min: 99
interval: 1m
- name: request-duration
thresholdRange:
max: 500
interval: 1m
A/B Testing¶
Run experiments with different model versions:
from anya_ai.experiment import ABTest
# Define experiment
experiment = ABTest(
name="model-comparison",
variants=[
{"name": "gpt-4", "weight": 70, "config": {"version": "1.0.0"}},
{"name": "llama-2", "weight": 30, "config": {"model": "llama-2-70b"}}
],
metrics=["accuracy", "latency"]
)
# Get variant for user
variant = experiment.get_variant(user_id="user123")
# Use variant config for inference
result = model.predict(..., **variant.config)
# Log metrics
experiment.log_metric("latency", variant.name, 0.15)
Best Practices¶
- Resource Management
- Set appropriate CPU/Memory limits
- Use GPU for compute-intensive models
-
Implement request timeouts
-
Reliability
- Use retries with exponential backoff
- Implement circuit breakers
-
Set up health checks
-
Performance
- Enable request batching
- Use model warmup
-
Implement caching for frequent requests
-
Security
- Enable authentication
- Validate input data
- Monitor for abuse
For more advanced deployment strategies, see the Model Serving Best Practices section below.
API Reference¶
REST API¶
Authentication¶
All API endpoints require authentication. Include your API key in the Authorization
header:
Authorization: Bearer YOUR_API_KEY
Base URL¶
https://api.anya.ai/v1
Endpoints¶
1. Model Inference¶
POST /models/{model_id}/predict
Make predictions using a specific model.
Request
{
"inputs": ["Hello, world!"],
"parameters": {
"max_length": 100,
"temperature": 0.7
}
}
Response
{
"outputs": ["Generated text response"],
"model": "gpt-4",
"model_version": "1.0.0",
"metadata": {
"tokens_generated": 20,
"tokens_processed": 5,
"latency_ms": 150
}
}
2. Model Information¶
GET /models/{model_id}
Get information about a specific model.
Response
{
"id": "gpt-4",
"version": "1.0.0",
"framework": "pytorch",
"input_schema": {
"type": "string",
"max_length": 2048
},
"output_schema": {
"type": "string"
},
"parameters": {
"max_length": {
"type": "integer",
"default": 100,
"min": 1,
"max": 4096
},
"temperature": {
"type": "float",
"default": 0.7,
"min": 0.0,
"max": 2.0
}
},
"created_at": "2025-01-01T00:00:00Z",
"updated_at": "2025-01-01T00:00:00Z"
}
Error Handling¶
All API errors follow the same format:
{
"error": {
"code": "invalid_request",
"message": "The request was invalid",
"details": {
"field": "temperature",
"issue": "Value must be between 0 and 2"
}
}
}
Common Error Codes¶
Status Code | Error Code | Description |
---|---|---|
400 | invalid_request |
The request was invalid |
401 | unauthorized |
Authentication failed |
403 | forbidden |
Insufficient permissions |
404 | not_found |
The requested resource was not found |
429 | rate_limit_exceeded |
Rate limit exceeded |
500 | internal_error |
An internal server error occurred |
503 | service_unavailable |
Service is currently unavailable |
Rate Limiting¶
- Free Tier: 100 requests per minute
- Pro Tier: 1,000 requests per minute
- Enterprise: Custom limits available
Rate limit headers are included in all responses:
X-RateLimit-Limit: 100
X-RateLimit-Remaining: 97
X-RateLimit-Reset: 1625097600
For a complete reference of all available endpoints, see the API Reference.
Best Practices¶
1. Model Versioning¶
- Use semantic versioning for models
- Keep backward compatibility when possible
- Document breaking changes
2. Error Handling¶
- Use custom error types
- Provide meaningful error messages
- Log errors with context
3. Performance¶
- Use batching for inference
- Implement model quantization
- Profile and optimize critical paths
4. Security¶
- Validate all inputs
- Sanitize outputs
- Implement rate limiting
Troubleshooting¶
Common Issues¶
- Model Loading Fails
- Check model file paths
- Verify model format
-
Check file permissions
-
Inference Performance Issues
- Check batch size
- Profile GPU/CPU usage
-
Check for memory leaks
-
Training Diverges
- Check learning rate
- Verify data preprocessing
- Monitor loss curves
Debugging¶
Enable debug logging:
use tracing_subscriber;
fn init_logging() {
tracing_subscriber::fmt()
.with_max_level(tracing::Level::DEBUG)
.init();
}
Examples¶
Text Generation¶
use anya_ai::{Model, TextGenerator};
let model = TextGenerator::load("gpt-4").await?;
let prompt = "Once upon a time";
let result = model.generate(prompt, 100).await?;
println!("Generated: {}", result);
Image Classification¶
use anya_ai::{Model, ImageClassifier};
let model = ImageClassifier::load("resnet50").await?;
let image = load_image("cat.jpg")?;
let class = model.classify(&image).await?;
println!("Predicted class: {}", class);
Security Considerations¶
1. Input Validation¶
- Validate all inputs
- Sanitize user-provided data
- Implement input length limits
2. Model Security¶
- Sign model files
- Verify model hashes
- Use secure model storage
3. API Security¶
- Authenticate API requests
- Implement rate limiting
- Use HTTPS
4. Data Privacy¶
- Anonymize training data
- Implement data access controls
- Log data access
Conclusion¶
This guide covers the essentials of AI integration in Anya Core. For more advanced usage, refer to the API documentation and examples.